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Objectives and OutlineObjectives and Outline

Program Objectives

•To develop a formalism that is adaptable to our current state-of-the-art 

modeling tools (SPICE, Cadence, BSIM, Synopsis, etc.)

•To improve our understanding of carrier transport in component 

structures at low temperature

� Do MOSFETs work much below 77K – the carriers freeze out? What 

gives?

� Impurity band formation

� Mobile channel densities and space charge

� The nitty-gritty

• Temperature dependent device / compact model parameters

• Temperature-dependent effects: Incomplete ionization, possible self-

heating, impact ionization, intrinsic carrier concentration variations

� Results and Conclusions



Temperature-Dependent I-V Curves of a 0.16 µm NMOS

W = 15.6 µm L   = 0.16 µm 
Bulk Lucent NMOSFET 

What do MOSFET IV Curves Look Like At What do MOSFET IV Curves Look Like At 

Low Temperature? Low Temperature? 

4 K I-V Curves of CMOS7 NMOS/PMOS

PRETTY MUCH LIKE THEY DO AT ROOM TEMPERATURE!



The Impurity Band Model*The Impurity Band Model*

*Esther Conwell, “Impurity Band Formation In Germanium and Silicon,” Phys. Rev. 103(1),51(1956)
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A. Discrete States

B. On-set of impurity band formation

C. Broadening of the impurity 
band and overlap with the main
band



The ZeroThe Zero--Order TurnOrder Turn--On ModelOn Model

• Oxide thickness is negligible

• No fixed charge in either the 
oxide or in the bulk 

• Vth
0 = 1.15V

• What do we observe?
– Vth = 1.35V (p-channel)
– Vth = 0.95V (n-channel)



Compact Modeling using Compact Modeling using VerilogVerilog--A A 

Behavioral LanguageBehavioral Language

Develop a formalism that is adaptable to our current state-of-the-art 

modeling tools (SPICE, Cadence, BSIM, Synopsis, etc.)



Compact Modeling of Extreme Environment ElectronicsCompact Modeling of Extreme Environment Electronics

Aiding development / design of extreme low temperature integrated circuits !

• Compact models are necessary to efficiently simulate large size integrated 
circuits to achieve first-pass designs.

• Most commonly used compact model in industry is BSIM (BSIM3, BSIM4, 
BSIMSOI ….) 

• BSIM is comprised of MANY analytical equations. Along with approximately 
400 model parameters, it is used to simulate MOSFET current-voltage 

curves. 

For example, threshold 

voltage calculation in BSIM3 

is shown on the right.



Compact BSIM ModelsCompact BSIM Models

• Advantages: 

It is fast! There are many commercial simulators that efficiently solve 
BSIM equations.   

A tremendous knowledge base on device operation is already 
established. 

• Disadvantages: 

BSIM simulation results can be adjusted only by changing device model 

parameters (User is not allowed to see/access/modify BSIM equations). 

BSIM model is developed for modeling MOSFETs operating 

approximately in the 250 – 450 K temperature range.

BSIM I-V curves deviate from measurements at extreme low 

temperatures.

There is no explicit way to incorporate incomplete ionization effects.

BSIM has too many parameters!



Development of cryogenic integrated circuits ! Development of cryogenic integrated circuits ! 

Goal is to take advantage of the simulators / model parameter extractors  

and modeling experience coming with the use of a BSIM model but at the 

same time tailor its equation and parameter lists to be able to resolve 

extreme environment operation. 

SOLUTION: Use Verilog-A along with BSIM equations and parameters, 
and incorporate temperature specific effects by modifying equations and 
parameters in Verilog-A!



A Solution to Automated Cryogenic Design A Solution to Automated Cryogenic Design 



Cryogenic Design SuiteCryogenic Design Suite

Spectre
ADS

SmartSpice
HSPICE…

BSIM

Verilog-A

Compact Models / Analytical Equations

BSIM is a set of analytical equations for 

describing MOSFET operation. Only model 

parameters are user accessible!

Parameters as well as equations are user-

defined and can be modified at any time.

BSIM and Verilog-A need a 

compiler and a solver.

Calculated I-V Curves

Detailed Distributed Device Modeling

Device Simulator



VerilogVerilog--AA

• Verilog-A = Analog Hardware Description / Behavioral Modeling Language

• Verilog-A runs in almost all commercial device simulators = Cadence Spectre, 

Agilent ADS, Silvaco Smartspice …. 

• Very portable!

• Unlike BSIM type compact models Verilog-A codes are transparent 

enabling change of parameter lists as well as equations!

• Takes advantage of the built-in matrix solver of the simulation program it is 

running in. 

• Fully integrated with other simulation programs within the simulator. For 

example, part of the circuit can be modeled in Verilog-a and the rest in BSIM.

• Verilog-A language is relatively simple to understand and simulators allow 

users change the code.

We use BSIM3/4 translated into Verilog-A language. Therefore, we have access 

to BSIM3/4 model parameters as well as equations.



module mosfet(drain, gate, source, bulk);

inout drain, gate, source, bulk;

electrical drain, gate, source, bulk;

electrical drainp, sourcep; // internal nodes

`ifdef NQSMOD

electrical q;               // NQS charge model node

`endif

//****** Device Parameters ******//

parameter real L      = 5.0e-6;

parameter real W      = 5.0e-6;

………………..

vbs = TYPE * V(bulk,   sourcep);

vgs = TYPE * V(gate,   sourcep);

………………..

I(gate)    <+ TYPE * (-1)   * qdef * gtau;

I(drainp)  <+ TYPE * dxpart * qdef * gtau;

Example Example VerilogVerilog--A CodeA Code

BSIM3 Verilog-A code is 

approximately 6000 lines!



4 K  CMOS7 4 K  CMOS7 VerilogVerilog--A Simulations vs. MeasurementsA Simulations vs. Measurements

BSIM4 model parameters as well as equations are adjusted.

VGS = -1.35, -1.8375, -2.325, -2.8125, -3.3 V

VBS = 0 V

Symbols: Simulations

Solid lines: Measurements

PSOI



4 K  CMOS7 4 K  CMOS7 VerilogVerilog--A Simulations vs. MeasurementsA Simulations vs. Measurements

BSIM4 model parameters as well as equations are adjusted.

Symbols: Simulations

Solid lines: Measurements

VGS = -1.35, -1.8375, -2.325, -2.8125, -3.3 V

VBS = 0 V

PSOI



4 K  CMOS7 4 K  CMOS7 VerilogVerilog--A Simulations vs. MeasurementsA Simulations vs. Measurements

BSIM4 model parameters as well as equations are adjusted.

Symbols: Simulations

Solid lines: Measurements

NSOI



4 K  CMOS7 4 K  CMOS7 VerilogVerilog--A Simulations vs. MeasurementsA Simulations vs. Measurements

BSIM4 model parameters as well as equations are adjusted.

Symbols: Simulations

Solid lines: Measurements

NSOI



Iin
1st x 2nd x

3rd xIout =

4 K Compact Modeling BSIM4 Verilog-A: Current Amplifier



ConclusionConclusion

• MOSFET devices exhibit different physical effects at low temperatures.

• To be able to use BSIM-type compact models at low temperatures, we 
change model parameters as well as equations.

• Using the Verilog-A BSIM approach, we successfully matched the 
measured and calculated IV curves of  NMOS/PMOS devices with varying 
W/Ls.

• We also developed a compact model library universal for all the tested 
MOSFETs. 

• We believe that incomplete and impact ionizations play an important role at 
cryogenic temperatures, although they are typically not significant at room 
temperature.

– Especially at low gate biases, the IV curves display very non-linear 
characteristics, which must be modeled.

– At high frequencies, freeze-out affects frequency response.

– We are currently investigating appropriate models for low-temperature 
operation.

• Low temperatures and the resulting extremely low intrinsic carrier 
concentrations make low temperature device simulations very challenging. 
(Convergence also takes a long time.) However, so far we have made good 
progress on addressing many numerical issues.


